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Frequency-dependent hydrodynamic inductance and the determination of the thermal and
quantum noise of a superfluid gyroscope

Talso Chui and Konstantin Penanen
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We reexamine mass flow in a superfluid gyroscope containing a superfluid Josephson weak link. We intro-
duce a frequency-dependent hydrodynamic inductance to account for an oscillatory flow of the normal fluid
component in the sensing loop. With this hydrodynamic inductance, we derive the thermal phase noise, and
hence the thermal rotational noise of the gyroscope. We examine the thermodynamic stability of the system
based on an analysis of the free energy. We derive a quantum phase noise, which is analogous to the zero-point
motion of a simple harmonic oscillator. The configuration of the studied gyroscope is analogous to a conven-
tional superconducting RF SQUID. We show that the gyroscope has very low intrinsic noises1.9
310−13 rad s−1/ÎHzd, and it can potentially be applied to study general relativity, Earth science, and to
improve global positioning systemssGPSd.
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The practical use of quantum interference has becom
widespread with the development of the superconducting
terference devicesSQUIDd. The recent discovery of the Jo-
sephson effect in superfluids1–3 makes a very sensitive super-
fluid gyroscope a possibility. Already, Simmondset al.4 and
Mukharskyet al.5 have demonstrated gyroscopes based
this effect. With sufficient resolution, a potential geodesy a
plication of this device is for real-time precise measureme
of the Earth’s rotation speed. Jitter in Earth’s rotation is
source of uncertainty in real-time GPS. From the very lon
baseline interferometry measurements of Hide and Dicke6

the Earth’s rotation jitter causes an equivalent position jitt
of ,10 cm at the equator in a day. Precise measurement
the jitter in real time will allow this error to be removed.
Another potential application is in tests of general relativit
by precise measurement of the geodetic and the frame dr
ging precession. Understanding the fundamental limits
these gyroscopes is therefore of both scientific and practi
interest. In the following, we extend an earlier concept of th
fluctuations of the quantum phase7 to treat the superfluid
gyroscope. We consider a readout scheme in which the ro
tion rate is inferred from the measurement of the resona
frequency of small-amplitude oscillations in a resonatorsin-
set of Fig. 1d formed by a flexible diaphragm, a Josephso
weak link, and a sensing loop ofNL turns. We find that in a
typical geometry, the normal component undergoes oscil
tory motion and is not viscously clamped to the walls of th
gyroscope’s sensing loop. We treat the normal fluid flow b
introducing a frequency-dependent hydrodynamic indu
tance. We then explore how it affects the noise and stabil
of the gyroscope.

The flow of the normal component is coupled to the os
cillatory superfluid flow through mass conservation. The cu
rent driven by the diaphragm of areaA is rAẋ, wherer is the
fluid density andx is the displacement of the diaphragm from
equilibrium, positive if displaced upward in Fig. 1. Both the
normal fluid velocityun andx are oscillatory, while the su-
perfluid velocity us, the phase differencef across the Jo-
sephson junction, and the phase differencefL across the
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sensing loop have both a dc component, denoted by a s
script “ o,” and an oscillatory component, denoted by a tild

over the variable. Thusf=fo+f̃, wherefo is a dc phase

bias due to a steady rotational rateV, and f̃ denotes an
oscillatory component due to diaphragm oscillations. Th

Josephson-Anderson equation relatesx to f̃ by s" /mdf̃˙ =
−Dm=−DP/r=−kx/ srAd, whereDP is the pressure differ-
ence across the junction, and the contribution of temperatu
difference toDm is neglected. The mass current driven by th

diaphragm is therefore −r2A2kof̈ / s2pkd. Assuming an ideal
Josephson current-phase relation, the current through
junction with a critical currentIc is Ic sinf, where f for
clockwise flow is positive. The superfluid and normal fluid
current in the sense loop arersusa andrnuna, wherea is the
cross-sectional area, andrs, rn are the superfluid and normal
fluid densities. Since the normal fluid velocity is not uniform
over the cross-sectional area,un is understood to be an aver-
aged value. Mass conservation requires that

FIG. 1. The«sfod function contains thefo dependent ofDV in
Eq. s11d. The top, middle, and bottom lines are forbo=0.9, 0.999,
and 1.1, respectively. The inset shows the three components o
superfluid gyroscope. The sensing loop hasNL turns, but only one
turn is shown.
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− r2A2kof̈/s2pkd = Ic sinf + rsusa + rnuna + g8ḟ-drive,

s1d

where the termg8ḟ is due to all dissipative processes oth
than that due to normal fluid flow. The dissipative curre
due to normal fluid flow is already included asirn Imsunda. A
sinusoidal current drive term is also added to keep the os
lator’s steady-state amplitude constant; at resonance
drive term is imaginary. For oscillatory flow at frequencyf,
the extent of normal fluid flow in a tube of diameterd de-
pends on the viscous penetration depthl=Îh / sprnfd, where
h is the viscosity of the normal fluid. For superfluid4He
sRef. 8d near the lambda transition,l=74 mm/Îf. For super-
fluid 3He sRef. 9d at ,0.5 mK, l<1 cm/Îf. At high fre-
quencies, wherel!d, the fluid undergoes solid body mo
tion, where un= ũs. At low frequencies wherel@d, the
normal fluid is clamped to the walls, andun=0. Sinceun is
oscillatory, one can writeun=aũs, wherea is a proportion-
ality constant. Thusa→0 for low frequencies, anda→1 for
high frequencies; in both limits the flow is dissipationless.
intermediate frequencies,a is complex; Imsad accounts for
the dissipation. We write rsusa+rnuna=rsusoa+rLũsa
+ irnũsa Imsad, where uso is the dc component ofus, and
rL=rs+Resadrn is an effective density of fluid participatin
in nondissipative motion. We also define a total dissipat
parameterg that includes dissipation due to normal flu
flow, so thatgḟ=g8ḟ+ irnũsa Imsad. Equations1d becomes

− r2A2kof̈/s2pkd = Ic sinf + rsusoa + rLũsa + gḟ-drive.

s2d

It is possible to expressus in terms offL, using the relation
us=ko¹F / s2pd, and identifying¹F=fL /,, whereF is the
quantum phase of the superfluid wave function,7 , is the
length of the sensing loop, andko=h/m is a quantum of
circulation,h is Planck’s constant, andm is the mass of a4He
atom or the mass of a Cooper pair in3He. For sensing loops
of NL turns with radius R, ,=2pNLR. Thus rsusoa=
−IcfLo/bo, where bo=2pLoIc/ko is the hysteresis
parameter10,11 as in RF SQUID, andLo=, / sarsd is the ordi-
nary superfluid hydrodynamic inductance. The termrLũsa
can be written as −Icf̃L /bL, wherebL=2pLLIc/ko, and LL
=, / sarLd is the frequency-dependent hydrodynamic indu
tance. At low frequenciesLL→Lo. At high frequenciesLL
→L`, where L`=, / sard, and bL→b`, where b`

=2pL`Ic/ko. We obtain

− r2A2kof̈/s2pkd = Ic sinf − IcfLo/bo − Icf̃L/bL + gḟ-drive.

s3d

The sum off and fL is related toV. To obtain this
relation, we note that in a superfluid, while the relationus
=sko/2pd¹F is applicable in a rotating laboratory fram
the quantization conditions2p /kodrus8d,=2pM, whereM is
an integer or zero, must be applied in an inertial framesa
reference frame that is not rotatingd. The velocityus8 in an
inertial frame is related to the velocityus in the laboratory
frame by us8=us−VR. Performing the integral aroun
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a closed loop, in the zeroth quantum statesM =0d we
obtain s2p /kodrsus−VRdd,=fL−fx+f=0, where fL

=s2p /kodrusd,, the integral across the Josephson junction
gives f, while fx=s2p /kodrsVRdd,=2pNLG /ko, whereG
=2VpR2 is the circulation. UsingfL=fx−f, and making
the expansionf=fo+f̃, Eq. s3d becomes

− r2A2kof̃
¨ /s2pkd = Ic sinsfo + f̃d + Icsfo − fxd/bo + Icf̃/bL

+ gḟ̃-drive. s4d

The dc phasefo can be found by setting drive,ḟ, f̈, andf̃
to zero. We then expand aroundfo to obtain the equation of
motion and the resonant frequency. The results are

sinfo + sfo − fxd/bo = 0, s5d

fr2A2ko/s2pkdgf̃¨ + Icfcosfo + 1/bLgf̃ + gf̃
˙ = drive, s6d

fo
2 = foo

2 scosfo + 1/bLd, s7d

wherefoo
2 =kIc/ s2pkor2A2d is the resonance frequency if the

sensing loop is blocked. Notice that the crossover frequen-
cies forl<d in a tube of 1 cm diameter are,55 mHz and
,1 Hz for 4He and3He, respectively, while experimentalfo
is 10–100 Hz. One should useb` for evaluatingfo. Prior to
this work, normal fluid flow was ignored12 andbo was used
in Eq. s7d, which predicts a much lowerfo near the phase
transition.

Next, we derive the noise of the gyroscope by a procedure
similar to that for the displacement noise in a spring-mass
oscillator.13 The Langevin equation inf̃ can be obtained by
replacing the drive in Eq.s6d with a Langenvin equivalent
noise sourceId,

fr2A2ko/s2pkdgf̃¨ + Icfcosfo + 1/bLgf̃ + gf̃
˙ = Id. s8d

Since the thermodynamic conjugate7 of f is "is, where is
= Is/m is the superfluid particle number current,"is is the
conjugate force to the generalized displacementf. We mul-
tiply Eq. 8 by " /m to transform it into a balance of the
generalized force. Comparing this to the spring-mass
system,13 the power spectral density of the Langevin force
maps into "2idpvidpv

* =4kBTsg" /md, and thus IdpvIdpv
*

=4kBTsgm/"d, where a subscript “v” on a variable denotes
its Fourier transform. Following the spring-mass oscillator
case,13 the power spectral density off and the variance off
are

fvfv
* =

2kBT/fpfoQ"icscosfo + 1/bLdg
f1 − sf/fod2g2 + ff/sfoQdg2 , s9d

sDfrmsd2 =E
o

`

fvfv
* df = kBT/f"icscosfo + 1/bLdg,

s10d

where Q=r2A2kovo/ s2pgkd and assumingbL=b`. To de-
rive an expression relatingDfrms to the noise in the measure-
ment of fo, we assume that the oscillator is driven at fre-
09-2
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quencyfo, so that at steady state,f̃=fA cossvot+ud, where
fA is an amplitude andu is a phase lag. Thermal noise off
can be decomposed into an amplitude noise infA and a
phase noise inu. Only the phase noise contributes to th
error in frequency determination. The noise energy is divid
equally between the amplitude and the phase fluctuatio
The single side-band phase noise isLsfmd=s1/2dfvsfo

+ fmdfv
* sfo+ fmd / sfA/Î2d2. For Q@1, Lsfmd

<2tosDfrms/fAd2/ s1+4p2to
2fm

2 d, a Lorentzian noise spec
trum, whereto=2Q/vo is the oscillator’s ring-down time.
By integrating uvsfmduv

* sfmd=2Lsfmd, we obtain sDurmsd2

=sDfrms/fAd2. Alternatively, one can represent the oscill
tor’s motion without noise by a unit vector rotating with a
angle ofvot on a graph where thex axis isf /fA and they
axis isḟ / svofAd. The resultsDurmsd2=sDfrms/fAd2 is due to

Du=Dḟ cossvot+ud / svofAd−sDf /fAdsinsvot+ud. Since
two measurements ofu separated by a time intervalt much
shorter thanto are correlated, their differenceDustd should
tend to zero ast→0. We have shown by numerical simula
tion that for Lorentzian noise,Dustd=Durms

Î2t /to as t→0.
Now let the drive be turned off at timet=0, and a measure
ment begin where the time of zero crossing is measured
determine the period. After a timet!to, the accumulated
error in the time of zero crossing isDt=Dustd /vo

=sDurms/vodÎ2t /to. The uncertainty info for one such mea-
surement isDf1= foDt / t=DfrmsÎ2/stotd / s2pfAd. After time
t, the oscillator is re-excited and the measurement is repe
for N times for a total measurement time oft=Nt. The
error in the frequency is reduced toDf =Df1/ÎN
=DfrmsÎ2/stotd / s2pfAd. It is possible to make a free run
ning oscillator using feedback. A feedback scheme, wh
introduces an energy pulse at the zero crossings,
not affect the phase evolution and will preserve t
preceding expression forDf. Using Eqs.s5d, s7d, and s10d,
and the relations fx=s2pd2NLVR2/ko and DV
=sdV /dfxdsdfx/dfodsdfo/dfodDf, we obtain

DV =
ko

4NLR2Î 2kBT

p5fooQ"ict

«sfo,bod
fA

, s11d

«sfo,bod = bofcosfo + 1/bLg1/4scosfo + 1/bod/sinfo,

s12d

where 1/bL<1/b`=sr /rsds1/bod. Since r /rs.1, normal
fluid flow causes the noise to increase. The increase is
ticularly large for 4He near the lambda point. Forun=0, a
similar expression was given in Ref. 12 for a phase-sensi
detection scheme.

To explore thermodynamic stability, we write the fre
energy as7,14,15 dF="ic sinfdf+a,rsusdus+a,undsrnund
+A,1ẋdsrẋd+kxdx, where ,1 is an effective length of the
drive chamber. Writingus in terms off, we obtain

dF = "icfsinf + sf − fxd/bogdf + ,undIn + ,1ẋdIx + kxdx,

s13d

where In=rnuna and Ix=rẋA. We notice that during the os
cillation, thermodynamic equilibrium is maintained, becau
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fo is much lower than 1/tLK, where tLK sthe Landau-
Khalatnikov timed is the time scale for equilibration. BothIn
and Ix can be considered as constant at any instant. This
implies that the total superfluid currentIsptotal=micfsinf
+sf−fxd /bog must also be constant. Therefore, the stability
condition7,14 is s]Isptotal/]fd=s]2F /]f2dIsptotal,In,Ix,x

.0, lead-
ing to cosf.−1/bo. Whenbo,1, this condition is satisfied
for all possible values off, and the system is stable. How-
ever, whenbo.1, there are regions off where this condi-
tion is violated. When this happens, the system can jump
spontaneously to another stable quantum state. Forbo.1, it
is possible to have small-amplitude oscillations, but as the
amplitude increases, at some pointf enters the unstable re-
gion and a jump will occur. Therefore, the amplitude of the
oscillations is limited. At the instability point,Isptotalsfd has a
maximum. Notice that the stability condition is unchanged
by the normal component flow. However, contrary to prior
work, fo does not tend to zero at the instability pointfEq.
s7dg. Instead, it tends tofoosrn/rsds1/bod.

At small amplitudes, the equation of motion off̃ is simi-
lar to that of a simple harmonic oscillator. There should be a
quantum noise inf̃ which is analogous to the zero point
motion of the displacementz given bykz2l=" / smzvod, where
mz is the mass. By analogy,kf2l=" / smfvod, wheremf is a
generalized mass. To findmf, we multiply Eq.s8d by " /m to
transform it into a balance of the generalized force. By anal-
ogy, the coefficient of thef̈ term ismf=ko

2r2A2/ s4p2kd. We
obtain kf2l=2pfoo/ sicÎcosfo+1/bLd. The rotational quan-
tum noise can be obtained by replacing the thermal noise
Dfrms in Eq. s11d by the quantum noise.

We have expressed all quantities in terms of an effective
nondissipative fluid densityrL=rs+rn Resad, where a
=un/ ũs. For intermediate frequencies,a can be determined

as follows: Sinceũs=s" /mdsf̃L /,d and DP=−s"r /mdf̃˙ L,
one can writeDP=−ivr,ũs. The normal fluid experiences a
partial pressure ofsrn/rdDP. With this, one can solve the
Navier-Stokes equation numerically to determine the norma
fluid velocity profile as a function ofũs, and hence determine
a.

To optimize the gyroscope, we plot«sfo,bod of Eq. s12d
in Fig. 1, wherefo can be set by tilting the axis of the
gyroscope relative to the axis of rotation. It diverges atfo
=0 and p, where dfo/dfo=0 according to Eq.s7d. One
should avoid operating near these points. The top, middle
and bottom lines are forbo=0.9, 0.999, and 1.1, respectively,
for r /rs=2. Forbo.1 sbottom lined, it appears that«→0 at
the instability point wherescosfo+1/bod→0. As one ap-
proaches this point,fA must also be reduced to avoid jumps.
Thus, the relevant figure of merit,« /fA, approaches a con-
stant. For example, settingfo=0.75p and fA=0.08p as
shown by the thick dot, we obtain« /fA<1. Forbo,1 stop
lined, «sfod has a minimum within the range of 0 top. As
bo→1, the minimum is lower and it occurs closer top. If
one operates near the minimum, the available range for lin
ear oscillation is also reduced. Again,« /fA or DV ap-
proaches a constant. Forfo=0.9p and fA=0.07p, one ob-
tains« /fA<0.8.

We estimate the noise of a superfluid3He gyroscope by
09-3
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assuming that« /fA<1 andbo=1. At T/Tc=0.5, whereTc
=0.929 mK, Backhauset al.16 reported that the critical cur-
rent is Ic=0.093mgm/s or ic=9.331015/s. This Ic and T
implies that the following design would givebo=1: NL=1,
R=7.5 cm, anda=1 cm2. We further assume thatk is set to
give foo=100 Hz, and thatQ=100. From Eq.s11d, we obtain
a rotational rate noise density ofÎVvVv

* =2.6
310−9VE/ÎHz, where VE is the Earth’s rotation rate. It
should be noted that the diaphragm displacement nois
xvxv

* =sfkorA/kd2fvfv
* =10−30 m2/Hz at fo. This value is

achievable with SQUID electronics. For comparison, t
quantum noise inV is 6.3310−13VE, the geodetic and
frame-dragging precessions are,6.6310−9VE and ,6.6
310−11VE, respectively, and the Earth’s rotational jitter
,2.5310−9VE. In conclusion, we have shown that at i
fundamental limit, the gyroscope can potentially be appl
to study general relativity, Earth science, and to impro
GPS.

As a side note, the frequency-dependent hydrodyna
r
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inductance may have other important implications. For e
ample, Davis and Packard17 suggested that the ratio of hy
drodynamic inductances of the weak link to that of the se
ing loop, also known as theR ratio, should exhibit a strong
increase as one approaches the superfluid transition du
suppression of the superfluid density by the finite-size eff
in the weak link. It was not understood why the data
Sukhatmeet al.3 did not show such an increase. We notic
that theR ratio is the same as 1/bL, and should therefore also
be a frequency-dependent quantity. The decrease inrL at
reduced frequency may partially cancel the depression by
finite-size effect in the weak link, providing a plausible ex
planation

We thank Professor Goodstein for helpful comments
thermodynamic stability. This work was carried out at the J
Propulsion Laboratory, California Institute of Technolog
under a contract with NASA.

PHYSICAL REVIEW B71, 132509s2005d
T.

.

-

E.
1O. Avenel and E. Varoquaux, Phys. Rev. Lett.60, 416 s1988d.
2S. Backhaus, S. V. Pereverzev, A. Loshak, J. C. Davis, and R.

Packard, Science278, 1435s1997d.
3K. Sukhatme, Y. Mukharsky, T. Chui, and D. Pearson, Natu

sLondond 411, 280 s2001d.
4R. W. Simmonds, A. Marchenkov, E. Hoskinson, J. C. Davis, an

R. E. Packard, NaturesLondond 412, 55 s2001d.
5Y. Mukharsky, O. Avenel, and E. Varoquaux, Physica B280, 287

s2000d.
6R. Hide and J. O. Dickey, Science253, 629 s1991d.
7T. Chui, W. Holmes, and K. Penanen, Phys. Rev. Lett.90,

085301s2003d.
8G. Ahlers, in The Physics of Liquid and Solid Helium, Part I,

edited by K. H. Bennemann and J. B. KettersonsWiley, New
York, 1976d, p. 176.
E.

e

d

9M. Nakagawa, A. Matsubara, O. Ishikawa, T. Hata, and
Kodama, Phys. Rev. B54, R6849s1996d.

10A. H. Silver and J. E. Zimmerman, Phys. Rev.157, 317 s1967d.
11B. Chesca, J. Low Temp. Phys.110, 963 s1998d.
12O. Avenel, Yu. Mukharsky, and E. Varoquaux, J. Low Temp

Phys. 135, 745 s2004d.
13P. R. Saulson, Phys. Rev. D42, 2437s1990d.
14T. C. P. Chui, D. L. Goodstein, A. W. Harter, and R. Mukho

padhyay, Phys. Rev. Lett.77, 1793s1996d.
15D. L. Goodstein,States of MattersDover, New York, 1985d, p.

336.
16S. Backhaus, S. V. Pereverzev, A. Loshak, J. C. Davis, and R.

Packard, Science278, 1435s1997d.
17J. C. Davis and R. E. Packard, Rev. Mod. Phys.74, 741 s2002d.
9-4


